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Non-axisymmetric instability of polar orthotropic annular plates
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Abstract. The non-axisymmetric instability of polar orthotropic annular plates under inplane uniform radial
pressures is studied by use of the shooting method. The characteristic equations and eigenvalues under a variety
of edge conditions are given. Under two appropriate hypotheses, we prove that all eigenvalues are bifurcation
points. Hence, it is possible that non-axisymmetric buckled and post-buckled states branch from axisymmetric
unbuckled states of an annular plate. Asymptotic formulae for buckled states are obtained and curves for the
deflection and stress are shown.

1. Introduction

In this paper, we investigate the buckling and post-buckling behaviour of polar orthotropic
annular plates. We take the governing equations to be those von Khrman's equations
generalized by the authors in [6, 7], expressed in polar coordinates (r, 0). These form a system
of fourth-order coupled partial differential equations with variable coefficients which contain
several geometrical and material parameters. Critical loads for the non-axisymmetric instab-
ility of annular plates with a variety of boundary conditions and material parameters have
been computed using variational and finite-difference methods [1-5], but non-axisymmetric
buckling and post-buckling behaviour was not discussed in those papers. In this paper, we
employ the shooting method [9] to investigate the non-axisymmetric buckled and post-buckled
states of polar orthotropic annular plates under a variety of boundary conditions and
subjected to inplane uniform radial pressures. The characteristic equations and their eigen-
values are obtained. We show that all eigenvalues are bifurcation points and that the
bifurcation solution is unique provided that two specified hypotheses are valid. The asymp-
totic formulae for the non-axisymmetric bifurcation solution are given and curves showing
the corresponding deflection and stress are presented.

2. Mathematical description of the problem

We consider a polar orthotropic annular plate with thickness h, and inner and outer radii
a and b. It is assumed that the inner and outer edges are subjected to inplane uniform radial
pressures Pa and Pb, respectively, and that the anisotropic polar point of the plate coincides
with the geometric centre O of the annulus. We take O as the origin of polar coordinates
(r, 0) and the mid-plane as the (r, 0)-plane, and assume that, when the annular plate is in
its unbuckled state, it occupies the region Q in the (r, 0)-plane and its edge is aQ. We denote
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the radial and tangential displacements of the mid-plane of the plate by ur and u, the
deflection by w, the stress components by a,, U0 , TrO, the strain components by er, %o, YrO and
the bending moments and shearing forces by Mr, M, Mro and Qr, Q0, respectively. These
quantities are all functions of r and 0. In the region n, we have the following equations:

(i) Equilibrium equations

O r 1 t'rO o -
+ + - = 0,

ar r aO r

OZrO 1 a 2
+ 

- + - - rO = 0,
ar r r

ar ar 0 r0] Ar 30J rarJ

1 ar 7 I 02, ) 1 2+ (I27) 2 02f)

r Tr r2 T22T +, +o02 + r r O'

(ii) Strain-displacement relations

OU r 1 faW2

Ur laUo I 17V 2
go + + Ir r 00 2 \r OJ'

YrO = + + --ar r r r ar O'

(iii) Constitutive equations

1 1 1
r = (r - VrOO), O = (a- VOr), YrO = rO,

Er Eo G

in which Er, E0, Vr, v and G are material constants and satisfy the relation Vo/Vr = Eo/Er.
As in [6, 7], for the present case, there exists a single-valued stress function 0(r, 0) in terms
of which the stress may be expressed as

1 b0 1 20p a2p 1 a21 
'r = -- r + -2 0 = ,2 rO = r Or r 2 002 ' Or2 ' = r2 aO0 r Ora0
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From these relations, we obtain the following governing equations for buckling of polar
orthotropic annular plates:

Dr40 + -2 O a3, 1 a2 1 a 1 a40 1 a2fV
Dr + , -_D r D r rr4o + 2(Do + Dk) 

1 047 1 a3 2 2+ 0 20 ( a 1 02a02

r ar2 DaO2 r3 ara2 a rr r2 a02J r + r + 02J

2 I - 1 r/( 0_ = 0, (2. 1)ar rr2 r r 004r ar- 2 r+ aEJ r a0

1 a04 1 2 a3 0 1 1 a2¢ 1 1 a 1 1 a4 + 1 1 - r 2 a2 (p

Eo ar4 E r ar3 EE rr2 E r3 Er Er4 a4 2G Er J r4

( 1 2v'\ 1 4 ,
G Er r2a Or2 002

2vr1 1 a3 d) 2 a2 0a 1
Er G r3 ar0a2 + r3 ar a r4

a002 1 r 00]2

1 2 0 1 0a2 a2f7
+ - = 0,

r ar r ar2 ar2 002

in which

Erh3 Eo h3 Gh3

Dr - Do =12(1 - 1VrVO)' Dk = VoDr + Dro, Dr 6 '

(2.1)b

The boundary conditions in the transverse direction at the edges of the annular plate may
be any of the following conditions (or appropriate combinations of them):

00
(a) w = = 0,

(b) w = Mr = 0,

for edges fixed;

for edges simply supported;

1 aMro 00
(c) Mr = Qr + - + N = 0, for edges free,

r 00 ar

where N is the assigned normal membrane force on an edge.
The boundary conditions in the mid-plane are

r r r 21 r J = ° for r = a,r ar ra = Pa, = 0, for r = a,

a( 1 02 , forr b.
r -+ r2 002 - Pb, rr Ir 0 = 0, for r = b.

(2.2)

(2.3)
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For perforated plates, we have to add conditions which ensure the displacements to be
single-valued. From [6], we have

THEOREM 1: In the annular region f, there exist single-valued displacements u, v and rotation
co = Ov/Ox - OulOy if and only if the following relations

°r ( - gr g + rO

f02-r _ Yr O + r-go

00 Or

o V ` r

Jrnt-'r° 

-1 0 dO = 0,

- r) cos dO = 0,

- r) r=a sin OdO = 0

are valid, where

1 - Or2 _f r/'
- - 1 aOW\2

° ° - r VrO = YrO -go s -2 r 0) 

1 Oa Oaw

r 00 Or'

u = u, cos 0- u sin , v = ur, sin 0 + uo cos 0.

By using the relations between the stress function 0 and the stress, the relations (2.4) may
be expressed in terms of p and ¢.

When the stress states are completely defined, the difference between any two stress
functions is an arbitrary linear function of x and y. In order to uniquely define the stress
function we have to specify some normalizing conditions, for example,

(b, 0O) = 0(b, r) = ' (b, 0) = 0. (2.5)

Thus, the problem is to determine the functions (r, 0) and 0(r, 0) in C1 such that equations
(2.1) and conditions (2.2)-(2.5) are satisfied.

By introducing non-dimensional variables

r a C2x= c = < 1, w(x, ) = - w(r, 0), P(x, ) =
b' b h Erh,

vDr + Dro Eo voC2 = 12(1 - v,vO), o , D = Er = o
Dr E v,

(2.6)

E pb= fVr, k _
2G' Pa

(2.4)

n = C2 Er ,j
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the boundary value problem (2.1)-(2.5) is reduced to the following non-dimensional form:
(i) Governing equations

L,(w)- N(w, F) = 0,
(2.7)

L 2 () + # N(w, w) = 0,

in which Li(-) and N,(, :) are linear and non-linear differential operators, respectively,
defined by

r 4 2 0
3 p 0 2 p 0 f 04 2(a + ) 02
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-2 0 3 ax 2 ()'

04 2 03 
0a2 0 a a 0 4 2( - 6) a2

L() = x4 - _ _ _aX
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26 a4 26 03 1 (28)
X

2
aX

2
O

2
X202 X3 aX02 (')

/1 a() 1 02(.)'\ 02(:) (1 a (:) 1 2(:)) 2(.)ax + x2 002 + ax x 2 ao2) ax2

21 (') 1 1 0(:) 1 02(:).-X2 -X X - xa/2 ao x aXFo'

(ii) Boundary conditions in the transverse direction

aw
(a) w = a = 0, for x = c, 1,

(b) w = Mx = 0, for x = c, 1, (2.9)'

Nb2 aw
(c) = + - = 0, forx = c, 1,

D ax

or any appropriate combination of these boundary conditions, in which

C2b2 r2w (1 aw 1 2w\

- X Mh r= L + Vox OX X2 '-,

= Cb 2 I aw 1 a2 w a2 w]
Do h ° -x + + + Vr ax 2 j'
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xo - b2Mro = a- 
Droh ax W

Vx= Ih Qr
1 aMr\

r ) 

= 3 w 1 a2w 2a - vo a 3w
= x3 +x - xX + a X2 kx0 2

1 02w
X a02) ax x 02 

For convenience, we write (2.9)' in the unified form

G(w) = 0.

(iii) Boundary conditions in the mid-plane

1 aF 1 a2P

x +x 22 - i
(1 ) = 0, for x = c,

(2.11)

1 aF 1 0a2 a 1 aF
X X + = -,x '- = 0,forx = 1.

(iv) Single-valuedness conditions for the displacement

f [(P) + A,(W)]lIx=dO = 0,

JO2 [2( ) + A2(W)]lx=c COS dO = 0,

f02 [ 2(F) + A2(w)]lx=c sin dO = 0,

in which Ei(F) and Ai(w) (i = 1, 2) are linear and non-linear differential operators, defined
by

(v() - 6) 1 a3P 1 a02

() X ax a02 x2 02j

2 ( a3 1 a3F FaF
+ 2ax 3 - VI + Fa-j _X7- ___x 0 ~ X)

1 0'F 1 a2P /f1 aFp 1 02P\
X aX02 x2 -02 2 -x x x + ax @-2

r 3 1 aF 2 x2F 1
+ 2- Xx 3 + vo 2X X + X2 ]0)x 0211P/ x ax 2_ ~

(B)

(2.10)

(2.9)

(2.12)

2 a 1 02,P
x ax + P d_0
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w) 2 1 aW2 1 2W aW 1 aw 02w

I SX \X a00 0 x 02 Tx x 0 ax0'

rl aw a'w aw , Iawx2 1 2
-2 x 002 +o + x 

As Ai(w) (i = 1, 2) are non-linear in w, the single-valuedness conditions (2.12) are three
non-linear functional constraint equations.

(v) Normalizing conditions

0F
F(1, 0) = 0. (2.13)

Thus, the problem is reduced to solving for the functions w(x, 0) and i(x, 0) in the region:
c < x < 1, 0 < 0 < 2, such that the non-linear equations (2.7) and the conditions
(2.9)-(2.13) are all satisfied.

Let the solution for unbuckled states of the annular plate be (w°, F° ). By definition, letting
w = w° = 0 in (2.7)-(2.13), we have a boundary-value problem for F° . According to the
uniqueness theorem of elasticity theory, the solution F°(x, 0) F°(x) is unique.

When / = 1, we obtain from (2.7)-(2.13)

F°(x; ) = , + 2 In x + C 3X2 + C 4x2 In x, (2.14)

in which

(k - 1)c ~3 c2 - £*
C1 = -C 3 , C2 = ( 1) c 2 = 0;

l c2 2(1 - c2)

when /3 - 1, we have

F°(x; ;) = C, + C2X
2 + C3X 1+ + c 4 - , (2.1 4 )b

in which

(c-51 k - )
C, = -(C 2 + 3 + 4 ), C2 = 0 C3 (I + 

( - kc- 4);A

(1 - /-)(c x' - c-4)

and we note that the expression for F°(x) has to be suitably modified when Pa = 0.
Now let F(x, 0) _ F(x, 0) - F°(x, 0), then the boundary-value problem (2.7)-(2.13)

may be rewritten as follows:
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(i) Governing equations

l dF° 2w l aw 1 2w\ d2F0
LI(w) x ax Nx2 02 ) d 2 -N(w, F) = 0,

x d ax2T xx 2ox dx 2 (2.15)

L2(F) + Nl(w, w) = 0;

(ii) Boundary conditions in the transverse direction

G(w) = 0; (2.16)

(iii) Boundary conditions in the mid-plane

I F 1 02F a 1 aF)
xa-x + x2 802 x- x-) = 0, forx = c, 1; (2.17)

(iv) Single-valuedness conditions of the displacement

f2 [YZ(F) + A(w)llx=cd0 = 0,

fJ [Z2(F) + A2(w)]lx=c cos d = 0, (2.18)

f2' [Z2(F) + A2(w)]lx=c sin OdO = 0;

(v) Normalizing conditions

aF
F(1,0) = F(1,i) = (1,0) = 0. (2.19)

Therefore, the fundamental problem (which we denote as (EP)) is finally reduced to deter-
mining w(x, 0) and F(x, 0) such that the equations (2.15) and the conditions (2.16)-(2.19)
are satisfied.

3. Linearized problem and critical loads

Obviously, for any l, the problem (EP) has the trivial solution

w(x, 0;) = 0, F(x, 0; A) = 0,

which corresponds to unbuckled states of the annular plate. As is known from bifurcation
theory [8], non-trivial solutions branch from the trivial solution of the problem (EP) only at
eigenvalues * for which the linearized problem (which we denote by (LP)) has at least one
non-zero solution; that is, the following boundary-value problem has at least one non-zero
solution:
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(i) Differential equations

L dF° a2w /1 aI 1 a2f'\ d2F°

x dx ax2 -x ax + 2a2/ dX2 0,
(3.1)

L2 (F) = 0;

(ii) Boundary conditions in the transverse direction

G(w,) = 0; (3.2)

(iii) Boundary conditions for the mid-plane

1 a 1 a2p a 1 aF
X X 02 -- X = 0, for x = c, 1; (3.3)

(iv) Single-valuedness conditions for the displacement

sZ(P)F)x=cdO = fo z 2(F)lx=c cos OdO = o 2(F)lI=c sin OdO = 0; (3.4)

(v) Normalizing conditions

aP
F(1,0) = P(1, r) = (1, 0) = 0. (3.5)

From (3.1)b and (3.3)-(3.5), we obtain that F(x, 0) = 0. As the set {cos nO} is complete in
the space L 2(Q), any solution of equation (3.1)a with (3.2) may be written in separated
variables form. Hence, we express w(x, 0) as

vi(x, 0) = n',(x) cos nO, (3.6)

where n is the number of circumferential waves of the buckled annular plate for which the
corresponding critical load takes the least value. When n = 0, buckled states of the annular
plate are axisymmetric and when n 0, buckled states are non-axisymmetric. The numerical
computation shows that n is not always zero [1-5]. This means that an annular plate with
axisymmetric edge conditions and subjected to axisymmetric inplane forces may give rise to
non-axisymmetric buckling. Substituting (3.6) into (3.1)a and (3.2), we have the following
boundary-value problem for ,n(x):

r d4 2 d3 + 2an2 ( d2 1 n4 - 2(c + fl)n 2

n(Ld 4 +x dx3 x2 x 4) x4 2]I-x x dx X4

FrdP d2 d2P0 (d n2

L dx dx 2 + d x )]- Q' (3.7)

= 0, 

(3.8))
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in which F°(x, A) iP'(x), and G(-) is the result of substituting (3.6) into (2.10) and
cancelling cos nO.

Next, we use the shooting method [9, 10] to determine non-zero solutions of (3.7) and (3.8).
For definiteness, we assume that the edge x = 1 is fixed. The treatment is similar when the
edge x = c is fixed.

First, we construct an initial-value problem

L,(¢n) = Q, i(1) = 0'(1) = 0, "(1) = l, "'(1) = a2, (3.9)

in which al and a2 are undetermined constants. Obviously, any solution of (3.9) is a linear
combination of solutions of the following two initial-value problems

L,,(,l) = Q, 0(1 = iQ ,(1) = 0, 0'(1) = 1, ,' (1) = 0, (3.10)

L,(, 2) = Q, , 2 (1) = 02(1) = , 2,'(1) = 0, 2"(1) = 1. (3.11)

For any given i, the problems (3.10) and (3.11) have unique solutions f,(x; A) and *,2(X; i),
respectively. Hence, an arbitrary solution of (3.9) may be written as

*,(x; ) = ClIl(x; A) + 0C2V2(x; 2). (3.12)

To make ¢*(x; A) a solution of (3.7) and (3.8), we must choose ai such that the conditions
at the edge x = c are satisfied. Thus, we obtain a system of linear algebraic equations on aX
and 2,2 given by

[Ac [ a a2 = 0. (3.13)
b, b2 J(2J

The elements of the matrix A will be defined by the conditions at the edge x = c. For
example, when the edge x = c is clamped, we have

a = 0i(c; A), b = '(c; A), i = 1, 2;

when the edge x = c is simply supported, we have

a = Oi(c; A), bi = i,'(c; 2) + - r'(c; A), i = 1, 2;

and when the edge x = c is free and Pa = O, we have

a = k"(c; A) + vo0 ( i(c; A) - i(c; A)), i = 1, 2;

1 = "(;(2o+ - vo)n 2 + f 2c - v +; A)
b = ¢,"(c; 2) + - ¢f7(c; 2) + o(n 2 c; + ).IC C2 c3
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Table 1. Critical loads (for inner edge free and outer edge fixed, and Pa = 0 and v, = 0.3)

0.5 0.8 1 1.25 2 5

8.24 11.74 13.95 16.56 23.79 49.26
0.1 8.25* 11.77* 13.95* 16.58* 23.61* 49.29*

(0) (0) (0) (0) (0) (0)
8.86 11.70 13.60 15.98 23.03 49.02

0.2 8.87* 11.70* 13.60* 15.99* 23.06* 49.05*
(0) (0) (0) (0) (0) (0)

11.08 13.39 14.96 16.96 23.12 48.27
0.3 11.08* 13.39* 14.96* 16.96* 23.13* 48.30*

(0) (0) (0) (0) (0) (0)

15.25 17.22 18.55 20.24 25.50 48.04
0.4 15.26* 17.22* 18.55* 20.25* 25.50* 48.09*

(0) (0) (0) (0) (0) (0)

22.86 24.59 25.76 27.23 31.76 51.26
0.5 22.86* 24.59* 25.76* 27.23* 31.77* 51.31*

(0) (0) (0) (0) (0) (0)
28.34 31.56 33.50 35.36 41.02 60.74

0.6 28.35* 31.56* 33.50* 33.36* 41.02* 60.74*
(3) (3) (2) (2) (2) (1)

36.89 41.36 43.68 46.45 53.94 77.34
0.7 36.87* 41.36* 43.69* 46.46* 53.94* 77.34*

(5) (5) (4) (4) (3) (2)

54.00 60.71 64.66 68.70 79.38 111.57
0.8 54.03* 60.72* 64.70* 68.71* 79.40* 111.60*

(9) (8) (7) (7) (6) (5)

106.08 119.80 127.48 136.01 157.19 216.80
0.9 106.10* 119.80* 127.50* 136.00* 157.20* 216.80*

(21) (18) (17) (16) (14) (11)

Remark: Quantities with * are results in [1] and the number in () is n.

Thus, (3.13) has non-zero solutions {a} - 0 if and only if

ab 2 - a2b, = O.

Hence, ) is a critical load for the annular plate if and only if i is a root of the characteristic
equation (3.14). We use a finite-difference method with variable step-length to solve (3.7) and
(3.8), and then apply (3.14) to give the critical loads on the annular plate for a variety of edge
conditions. In Tables 1, 2 we list some numerical results for the critical loads and compare
them with those of [1]. For later convenience, we also list some values for ai and bi in Table 3.

According to the general theory of ordinary differential equations, when 2 = 2* is a root
of (3.14), the linearized problem (LP) has at most two non-zero solutions which are linearly
independent. But according to the theory of linear algebra, when 2 = A* is a root of (3.14),
there exist two linearly independent solutions to (LP) if and only if A* is simultaneously an
eigenvalue of the following four problems:

(i) ,(z) = Q, z(1) = z'(1) = z"'(1) = a, = 0,

39
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Table 2. Critical loads (for edges fixed, and p. = 0 and v = 0.3)

0.5 0.8 1 1.25 2 5

38.70 42.25 44.52 47.40 55.73 84.34
0.1 38.71* 42.25* 44.53* 47.42* 55.74* 84.30*

(2) (2) (2) (2) (2) (1)

50.19 53.81 55.68 58.01 64.87 91.67
0.2 50.19* 53.83* 55.69* 58.01* 64.89* 91.68*

(3) (2) (2) (2) (2) (2)

62.38 67.71 70.24 73.40 82.85 107.76
0.3 62.39* 67.71* 70.25* 73.41* 82.86* 107.76*

(4) (3) (3) (3) (3) (3)

77.47 85.52 89.11 93.16 105.1 134.2
0.4 77.48* 85.53* 89.11* 93.17* 105.1* 134.2*

(5) (5) (4) (4) (3) (3)

97.39 108.1 113.8 120.71 134.70 173.29
0.5 97.39* 108.2* 113.8* 120.70* 134.70* 173.30*

(7) (6) (6) (6) (5) (4)

126.18 141.58 150.01 158.79 180.18 233.39
0.6 126.20* 141.60* 150.00* 158.80* 180.20* 233.40*

(10) (9) (6) (8) (7) (5)

173.20 196.09 208.67 222.29 254.70 337.58
0.7 173.30* 196.10* 208.70* 222.30* 254.70* 337.60*

(15) (13) (12) (12) (10) (8)

266.59 303.88 324.40 346.89 402.01 544.69
0.8 266.60* 303.90* 324.40* 346.90* 402.00* 544.70*

(24) (22) (20) (19) (17) (13)

544.60 624.69 669.19 716.69 840.78 1168.30
0.9 544.60* 624.70* 669.20* 716.70* 840.80* 1168.00*

(53) (44) (44) (42) (37) (29)

Remark: Quantities with * are results in [1] and the number in () is n.

Table 3. Values of a, (for inner edge free and outer edge fixed, and Pa = 0 and vo

0.5 1 2

1.325 1.315 1.298
- 0.733 - 0.736 - 0.742

3.711 3.657 3.554
- 0.707 - 0.704 - 0.698

0.5

4.973
0.489
2.203
0.145

= 0.3)

5

4.512
- 0.469

2.165
-0.144

4.917
- 0.487

2.198
-0.145

(ii) L,(z) = Q, z(1) = z'(l) = z"'(1) = b = 0,

(iii) n(z) = Q, z(l) = z'(1) = z"(1) = a2 = 0,

(iv) (z) = Q, z(1) = z'(1) = z"(1) = b2 = 0.

From Table 3 it is easily seen that a; and bi are not all zero. This means that generally there
is no A* which is simultaneously an eigenvalue of the above four problems.

I I
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HYPOTHESIS 1: There is no which is simultaneously an eigenvalue of the above four
problems.

THEOREM 2: If A = A* is one eigenvalue of(3.7) and (3.8), and Hypothesis 1 is valid, the only
non-zero solution to the problem (3.7) and (3.8) is (3.12).

In this case, for some N which corresponds to = *, the eigenvector of the linearized
problem (LP) is (N, F) = (N(x) cos NO, 0), and the dimension of the space of eigenvectors
is 1; that is, the space of eigenvectors of (LP) is spanned by {WiN(x) cos NO, 0}.

4. Post-buckling analysis and asymptotic formulae of bifurcation solutions

To discuss non-trivial solutions of the problem (EP) near = *, we seek a solution of the
following form:

WN(x, 0) = eN(X, 0) + EWN(X, 0; ),

FN(x, 0) = EFN(X, 0; 8), = * + N(). (4.1)

Here, we have set N(x, 0) - iN(x) cos NO, where N is the number of circumferential
waves of the buckled plate when = * and WN(x, 0) is the non-zero solution of (3.7) and
(3.8); in (4.1) is a small parameter defined by

= fo f WN WN dx dO/ fo' j N dx dO. (4.2)

Hence, we immediately obtain

J2 f N(x, O) fVN(x, )dxdO = 0. (4.3)

By substituting (4.1) into the equations and conditions (2.15)-(2.19) for the problem (EP),
we obtain the equations and boundary conditions for W, FN and N as follows:

(i) Differential equations

L·()r L.(W) -[~ d/' 2 N 1J2 [N d2F°LA,.(WN) L,(Wl) - d*
Ixdx x2 + x x x2 00 2 } dx2 j

N[l 2d2(N+1 2 (X + WN) 1 da()(N + N) N + WN) d20

N L dx Ox2 - 2 092 +- ax dx2

+ ENI(FN, N + N), (4.4)a

L 2(FN) = - 2 N,(W + WN, WN + N); (4.4)b
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(ii) Boundary conditions in the transverse direction

G(WN) = 0; (4.5)

(iii) Boundary conditions in the mid-plane

x a-- -+ xap 0 - = 0, forx = c,1; (4.6)

(iv) Single-valuedness conditions of the displacement

j 2f [XI1(FN) + eAl(fN + WN)]IX=Cd = 0,

JfO [Y2(FN) + A(¢N + WN)lx=C cos 0 dO 0, (4.7)

Jo2 [A2(N) + A2(WN + WN)]lx=C sin 0dO = 0;

(v) Normalizing conditions

5FN
FN(1, 0) = FN(1, T) = OF (1, 0) = 0. (4.8)

If for any e: 0 < el < e, we can obtain one unique solution WN, FN and AN to the
problem (4.3)-(4.8) satisfying

lim WN(x, 0; e) = lim FN(x, 0; e) = lim AN(e) = 0, (4.9)

the solution (4.1) is just one non-trivial solution of (EP) near i = * and it branches from
the trivial solution of (EP). Hence, the solution (4.1) is just one bifurcation solution near
i = * and describes the buckling and post-buckling behaviour of the annular plate. It is
easy to see that the problem (4.3)-(4.8) has the trivial solution iN = FN = 0 when

= . Therefore, to prove that the problem (4.3)-(4.8) has a unique solution WN, FN and
XN satisfying the condition (4.9), it is sufficient to prove only that e = 0 is not an eigenvalue
of the linearized problem. In other words, we have to show that the only solution to the
following problem

d a2 N AWN 1 a 02N d2p 1
L2X dr Px a + x2 02 dX2 J = 0,

L (FN) = o,

G(WN) = 0,

1_ 1 _ a1 (I OlaN
aFN + 1 a2 N = a = O, for x = c, 1

x Ax x \o a x / = o
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fo I(FN)Ix=cd = o2 2(F)IX=c cos OdO = go 2(FN)X=C sin dO = O,

FN(1, 0) = 7FN(1,) -- (1, 0) = 0.

is the zero-solution WN = FN = IN = 0. It is not difficult to show that PN(X, 0) = 0. To
solve for WN(x, 0), we also assume that

WN(X, 0) - WN(X) cos NO.

By substituting this into the equation and boundary conditions for WN(X, 0), we obtain the
boundary-value problem for WN(X )

LN(WN) - * [d d 2 N + (dV Ndx dX + dx

= AN [d_ dX2 + d

N2 ) d20]

N2 d2 F01

-x ) dx2 J'

G(WN) = 0.

By multiplying both sides of (4.9)a by wN(x) and integrating from c to 1, we obtain

f,' L (¢N) W N(x)dx - N f [dx (dx) 2
N2 d2PF 2 ]
x dx 2 Nx

- [d( d Jx x x )]x d ANdN- ]x=Ldx dx dx dN]x rW dx =

As sN(x) satisfies the equation (3.7), Li.(¢N(x)) = 0. At the same
conditions require that

LdFA dN x=1

dx dx

time, if the given edge

= 0,

and hence that,

d Nx dx== dx dx WNd W xr [d d ]x
= 0,

then from (4.10), we derive that AN = 0 provided that the sign of dPF/dx is the same as that
of d2F'/dx2. The numerical computation shows that buckling does not take place when the
unbuckled states of the annular plate are in tension. Therefore, we require that dF°/dx < 0
and d2F0/dx 2 < 0. Comparing (4.9) with (3.7) and (3.8), and noticing Theorem 2, we find

(4.9)

= 0. (4.10)
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that WN(x, 0) = aowN(x, 0) and s is a constant. But from (4.3), we derive that a, = 0.

Hence, WN(x, 0) O0. Thus, we have shown that the following theorem [8] holds:

THEOREM 3: Assume that A* is an eigenvalue of (3.7) and (3.8), and Hypothesis 1 is valid. If
unbuckled states of the annular plate are compressive, under appropriate boundary conditions,
the only bifurcation solutions branch from the trivial solution of (EP) near A = *, that is, all
eigenvalues A* are bifurcation points and the bifurcation solutions have the form (4.1).

This theorem shows that non-axisymmetric buckled states of the annular plate with axisym-
metric edge conditions can branch from axisymmetric unbuckled states under certain
conditions. Next, we shall seek the bifurcation solution i, N and AN of the problem (EP).
Assume that the inner edge of the annular plate is free and the outer edge is fixed and
subjected to a uniform radial pressure Pb. In this case, we have

F°(x) iF(x)

2(1 c) (1 - x2 + 2c2 In x), for = 1,
2(1 - c2)

1 i>!cr c 1 (x+< - 1) C (x - - 1) for # 1.
cf- c-4 + A/ 1- 

It is easy to verify that the conditions of Theorem 3 are satisfied. Assume that

WN = EmWN(X ), N = YEm'INm(X, ), N = E8 mN '

By substituting these into (4.3)-(4.8) and comparing the coefficients of like powers in e, we
obtain boundary-value problems for fNm, FNm and Nm (m = 1, 2, . . .). On solving these
problems, we get

[/NI(X, 0) = 0, FN2(X, 0) = 0, N1 = 0.

The function FNI is the solution of the following boundary-value problem:

L2(FN,) = - N,(N, N), (4.11)

X a--- 1 2 002 OX \ = 0, for x = c, 1, (4.12)
x Ax +X2 20 A x _

Jo Z,(ENl)x=c dO = 2 X2(FNMx)I cos OdO = o E2(FNi)I= sin 0d0 = 0, (4.13)

FNI(1, 0) = FNI(1, 7t) - (1,0) = 0; (4.14)
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and WN2 and XN2 satisfy the following equation and conditions:

1 dx 2a 1 d2F0 a ,O
LWN2) - LX d ax2 x dx 2 ax

45

1 2 j\
+ 002a}jX I

dF° 02aWN 1 d2 2 faWN 1 a2A-1
N,2 [ dx ax2 + d2 a + x0 2 J] + N(FNIj, WN)

,

W =aN2 = a = 0, forx = 1,a0

(4.15)

(4.16)a

+ o WN2 1 2 2 = 0 ,
a - O -)

for x = c,

a3 IN2 1 a WN2 2a - v f
3 N2 1 a WN2

ax3 + _ ax2 x2 ax a02 X 2

X (a2 + X 02 ) N2.
P ax x -00:F-

fo WIN2(x, ) 'N(x, )dxdO = 0.

(4.16)b

(4.17)

By substituting the eigenfunction 'N,(x, 0) = wN(x) cos NO of (3.7) and (3.8) into the
right-hand side of (4.11), we have

-f3PNI(N, fiN) ) f(X) + f2 (x) cos 2NO,

in whichf,(x) andf 2(x) are two known functions. We therefore may set

FN,(X, 0) = ~t(X) + 2(X) cos 2NO,

(4.18)

,(x)- d 2(x)- 2(x).

By substituting (4.18) into (4.11)-(4.14), we obtain the two boundary-value problems for
l(x) and ¢ 2(x)

d3 b, 2 d21 1 f d, ,
+ - + - ¢~ = f(x),dx3 + x dx 2 x2 dx x3

(I) If'I(1) = tl(c) = 0,

d2q I d 2 
d

2
q 1 P 0;dx x d x x2 LJx=c

a2 WN2
ax2
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2 d3 / 2 - 86N 2 d2 f12
x dx3 x2 dx2

p - 86N2 d¢ 2

+ x3 dx

16#N 4 - 8N 2( -_ 6)

2 = x = 0, forx = c, 1.dx

It is not difficult to obtain that the solutions ,(x) and ¢ 2(x) to the problems (I) and (II) are

(x) = (A, f t2-fl,(t)dt + C,)x x + (A 2 t2f (t)dt + C2) x

+ (A 3 I t2+ f,(t)dt + C3 ) x 4,

'2(x) = (, f t7 -mtf 2(t) dt + + (A 2 c t7 f 2 (t)dt + C2) xm

t7 -m3f 2 (t) dt + C3) x m3 + (A 4 : t7 - m4f2 (t)dt

in which A,, Ci and Ai, Ci as well as mi are all constants. Substituting qi(x) into (4.18) and
then substituting FN,, P° and WN into the right-hand side of (4.15), we may calculate the result
which possesses the formf 3(x, N2) cos NO + f 4(x) cos 3NO, where the functionsf 3(x, N2)

and f 4(x) are known. We may therefore assume that

WN2(X, 0) = 4)(X) cos NO + 2(x) cos 3NO. (4.19)

By substituting WN2(x, 0) into (4.15)-(4.17), we obtain the equations and boundary conditions
for O,(x) and 02(x) as follows:

+ 2aN2 d2
01

x dX2

_* (1 d d24 +
d ~x d(x-T

1 d2f0 d4l

x dx 2 dx

1 d f3N 4 - 2(a + ) N2

x dxJ +x

N2 d2f0 f 
x2 dx2 )1 = (x, 2,:)

41 = d 0, for x = 1,dx

dX2 + vo x dx

d34,
dx 3

1 d2 ,1+ 2 +
x dx 2

N2 0,) = 0, forx = c,

2 -v (N 2
1 12 d-

X2 - x dx)

I )l(X) *N(X)dx = 0;

and

(II)

d4q2

dx4

+ C) Xm4

r d44,

dx 4
2 d34(,

x dx3

ITI\ l

N2 ,) 0,

x

¢2 = 2(x),

I .l .I..I"--- I

- P(do
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and

I . A_ ._ A _ /nZ. _ A_ . - I .o_
d4

02 2 d 2 8 + 18oNL dL4 2 1 d 2 81fBN - 18(a + fi)N'
+ x0dx 4 x dx3 x2 dx2 xx dx X4

,* (1 d d20 2 1 d2F0 dO2 9N2 d2P0 f
2 dx dx2 x dx2 dx xf4( )X2

q2 d= 0, for x = 1,

d2x 2 1 d2 N 2 )

d +2 ( dx _ 2 = 0, forx = c,

d302+ 1 d2
0 2 9(2x - Vo)N 2 - dO2 9(2ac - - )N2 0

dX3 Xdx2+ x2 dx x3

By using finite-difference methods, we can obtain numerical solutions to the problems
(I)-(IV). Thus, the bifurcation solutions of the trivial solution of (EP) near 2 = * have the
asymptotic formulae

WN(X, 0) = eiN(X, 0) + E
3 WN2 (X, 0) + 0(

4 )

= EWN(x) cos NO + e3(ql(X) cos NO + b2(x) cos 3NO) + O(g4 ),

FN(x, 0) = F°(x) + 2FNI(X, 0) + O(E4 ) (4.20)

= F°(x) + e2(,(X) + 2(X) cOS 2NO) + O(e4),

2N = '* + E2;N2 + O(E3).

The stress is given in terms of the non-dimensional variables by

I F1 [O2 11 WN 1 N 1 a2WN'1
O- ,F 1 +2j 1 rI + N2)

= + __ _ v _ 
x x x2 02 - 1 - Vr a

x 2
x x x2 02 _'

-0 + N1J +X + X - (4.21)v
o T - - 1 t- ,\ a_ +2 a2 + )

l 82 FN 1 FN\ 2(a - vO) 1 a
2 WN 1 2 WN\

x xx x2 aO ± 1 - vv 0 x x 
"
- O X

2
0 '

The curves of the deflection and stress for various values of the material parameter 1f are
shown in Figs. 1-3 for particular values of N, 0 and c.

We can see that, from Tables 1, 2 and Figs. 1-3, the effects of the parameters fB and c on
A* and N as well as on the buckled states are all substantial. The effect of f on the deflection
decreases gradually with increasing c and the effect of N on the stress is also considerable.
We also see that the stress in the buckled plate consists mainly of the membrane forces but
that the shear stress is no longer zero.

(IV)
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Fig. 1. Curves of deflection and stress (for N = 2, 0 = 30°, c = 0.6 and E = 0.1).
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